81 research outputs found

    Eigenvalue Methods for Interpolation Bases

    Get PDF
    This thesis investigates eigenvalue techniques for the location of roots of polynomials expressed in the Lagrange basis. Polynomial approximations to functions arise in almost all areas of computational mathematics, since polynomial expressions can be manipulated in ways that the original function cannot. Polynomials are most often expressed in the monomial basis; however, in many applications polynomials are constructed by interpolating data at a series ofpoints. The roots of such polynomial interpolants can be found by computing the eigenvalues of a generalized companion matrix pair constructed directly from the values of the interpolant. This affords the opportunity to work with polynomials expressed directly in the interpolation basis in which they were posed, avoiding the often ill-conditioned transformation between bases. Working within this framework, this thesis demonstrates that computing the roots of polynomials via these companion matrices is numerically stable, and the matrices involved can be reduced in such a way as to significantly lower the number of operations required to obtain the roots. Through examination of these various techniques, this thesis offers insight into the speed, stability, and accuracy of rootfinding algorithms for polynomials expressed in alternative bases

    A review of the US Global Change Research Program and NASA's Mission to Planet Earth/Earth Observing System

    Get PDF
    This report reflects the results of a ten-day workshop convened at the Scripps Institution of Oceanography July 19-28, 1995. The workshop was convened as the first phase of a two part review of the U.S. Global Change Research Program (USGCRP). The workshop was organized to provide a review of the scientific foundations and progress to date in the USGCRP and an assessment of the implications of new scientific insights for future USGCRP and Mission to Planet Earth/Earth Observing System (MTPE/EOS) activities; a review of the role of NASA's MTPE/EOS program in the USGCRP observational strategy; a review of the EOS Data and Information System (EOSDIS) as a component of USGCRP data management activities; and an assessment of whether recent developments in the following areas lead to a need to readjust MTPE/EOS plans. Specific consideration was given to: proposed convergence of U.S. environmental satellite systems and programs, evolving international plans for Earth observation systems, advances in technology, and potential expansion of the role of the private sector. The present report summarizes the findings and recommendations developed by the Committee on Global Change Research on the basis of the presentations, background materials, working group deliberations, and plenary discussions of the workshop. In addition, the appendices include summaries prepared by the six working groups convened in the course of the workshop

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Backward Error of Polynomial Eigenvalue Problems Solved by Linearization of Lagrange Interpolants

    Get PDF
    This article considers the backward error of the solution of polynomial eigenvalue problems expressed as Lagrange interpolants. One of the most common strategies to solve polynomial eigenvalue problems is to linearize, which is to say that the polynomial eigenvalue problem is transformed into an equivalent larger linear eigenvalue problem, and solved using any appropriate eigensolver. Much of the existing literature on the backward error of polynomial eigenvalue problems focuses on polynomials expressed in the classical monomial basis. Hence, the objective of this article is to carry out the necessary extensions for polynomials expressed in the Lagrange basis. We construct one-sided factorizations that give simple expressions relating the eigenvectors of the linearization to the eigenvectors of the polynomial eigenvalue problem. Using these relations, we are able to bound the backward error of an approximate eigenpair of the polynomial eigenvalue problem relative to the backward error of an approximate eigenpair of the linearization. We develop bounds for the backward error involving both the norms of the polynomial coefficients and the properties of the Lagrange basis generated by the interpolation nodes. We also present several numerical examples to illustrate the numerical properties of the linearization and develop a balancing strategy to improve the accuracy of the computed solutions.status: publishe

    Constructing strong linearizations of matrix polynomials expressed in chebyshev bases

    No full text
    The need to solve polynomial eigenvalue problems for matrix polynomials expressed in nonmonomial bases has become very important. Among the most important bases in numerical applications are the Chebyshev polynomials of the first and second kind. In this work, we introduce a new approach for constructing strong linearizations for matrix polynomials expressed in Chebyshev bases, generalizing the classical colleague pencil, and expanding the arena in which to look for linearizations of matrix polynomials expressed in Chebyshev bases. We show that any of these linearizations is a strong linearization regardless of whether the matrix polynomial is regular or singular. In addition, we show how to recover eigenvectors, minimal indices, and minimal bases of the polynomial from those of any of the new linearizations. As an example, we also construct strong linearizations for matrix polynomials of odd degree that are symmetric (resp., Hermitian) whenever the matrix polynomials are symmetric (resp., Hermitian)

    Backward error of polynomial eigenvalue problems solved by linearization of Lagrange interpolants

    No full text
    This article considers the backward error of the solution of polynomial eigenvalue problems expressed as Lagrange interpolants. One of the most common strategies to solve polynomial eigenvalue problems is to linearize, which is to say that the polynomial eigenvalue problem is transformed into an equivalent larger linear eigenvalue problem, and solved using any appropriate eigensolver. Much of the existing literature on the backward error of polynomial eigenvalue problems focuses on polynomials expressed in the classical monomial basis. Hence, the objective of this article is to carry out the necessary backward error analysis for polynomials expressed in the Lagrange basis. We construct one-sided factorizations that give simple expressions relating the eigenvectors of the linearization to the eigenvectors of the polynomial eigenvalue problem. Using these relations, we are able to bound the backward error of an approximate eigenpair of the polynomial eigenvalue problem relative to the backward error of an approximate eigenpair of the linearization. We develop bounds for the backward error involving both the norms of the polynomial coefficients and the properties of the Lagrange basis generated by the interpolation nodes. We also present numerous numerical examples to illustrate the numerical properties of the linearization, and develop a balancing strategy to improve the accuracy of the computed solutions.nrpages: 17status: publishe

    Linearizations for Interpolation Bases

    No full text
    status: publishe

    Stability of rootfinding for barycentric Lagrange interpolants

    No full text
    status: publishe
    • …
    corecore